
Speed Kit: A Polyglot & GDPR-Compliant
Approach For Caching Personalized Content

Wolfram Wingerath∗, Felix Gessert∗, Erik Witt∗, Hannes Kuhlmann∗,
Florian Bücklers∗, Benjamin Wollmer†, and Norbert Ritter†
∗Baqend GmbH, Stresemannstraße 23, 22769 Hamburg, Germany

{ww, fg, ew, hk, fb}@baqend.com
†University of Hamburg, Databases and Information Systems, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany

{wollmer, ritter}@informatik.uni-hamburg.de

Abstract—Users leave when page loads take too long. This
simple fact has complex implications for virtually all modern
businesses, because accelerating content delivery through caching
is not as simple as it used to be. As a fundamental technical chal-
lenge, the high degree of personalization in today’s Web has seem-
ingly outgrown the capabilities of traditional content delivery
networks (CDNs) which have been designed for distributing static
assets under fixed caching times. As an additional legal challenge
for services with personalized content, an increasing number of
regional data protection laws constrain the ways in which CDNs
can be used in the first place. In this paper, we present Speed
Kit as a radically different approach for content distribution
that combines (1) a polyglot architecture for efficiently caching
personalized content with (2) a natively GDPR-compliant client
proxy that handles all sensitive information within the user
device. We describe the system design and implementation,
explain the custom cache coherence protocol to avoid data
staleness and achieve ∆-atomicity, and we share field experiences
from over a year of productive use in the e-commerce industry.

Index Terms—Web Caching, Cache Coherence, CDNs, Dy-
namic Data, Personalized Content, Data Privacy, Polyglot Storage

I. MOTIVATION: CHALLENGES IN MODERN WEB CACHING

HTTP caching plays a critical role in achieving high
scalability and low latency for online presences across all
industries. However, there are two critical challenges that
remain unaddressed even by state-of-the-art content delivery
networks (CDNs). The first major challenge is the latency-
staleness trade-off that arises from the purely expiration-
based HTTP caching model. While CDNs often support
custom mechanisms for cache invalidation (e.g. Fastly [36],
Akamai [39], Cloudflare [24]), there is no standardized pro-
cedure for retracting cached copies of a data item: Once
an item is stored in the browser cache, for instance, the
content provider has no means of updating it before the
initially provided time-to-live (TTL) runs out. This is in
stark contrast to virtually all modern Web applications that
tailor content to the individual users in the form of product
recommendations based on recently bought items or updates
on friends’ activities. To avoid staleness for users, personalized
content is therefore often excluded from caching in practice,
giving rise to latency stragglers and performance bottlenecks.
Immutable and generic resources like images or stylesheets are
thus often accelerated with a CDN, whereas the performance-

critical website itself (i.e. the HTML) is typically considered
uncacheable due to personalization and therefore delivered by
the origin server. The second critical open challenge is related
to the legal ramifications of using a CDN, since routing all
incoming user traffic through it is mandatory for deployment.
Since this effectively grants the CDN provider full access to
information that is protected by regulations such as the General
Data Protection Regulation (GDPR) [15] or the California
Consumer Privacy Act of 2018 (CCPA) [9], employing a CDN
requires careful consideration to avoid hefty fines [27] in case
of non-compliance or data breaches.

To address the above issues, we propose Speed Kit as an
approach for website acceleration that (1) caches personalized
content without increasing staleness and (2) comes with a
GDPR-compliant default configuration that makes sure pro-
tected data never leaves the user device. In Section II, we
explain how Speed Kit works in principle and where the smart
client proxy interacts with the polyglot backend, before we
cover what optimizations are applied by default in Section
III. In the following Section IV, we present the concept
of Dynamic Blocks that enables Speed Kit to cache even
personalized websites without delivering stale content. We
subsequently focus on cache coherence in Section V, shedding
light on the polyglot backend that combines CDN and database
features behind a unified API, detects and invalidates stale
caches, and thus enables ∆-atomicity freshness guarantees. We
then illustrate Speed Kit’s mode of operation with an example
of a typical page load in Section VI, compare our system
to other approaches for accelerating Web content in Section
VII, and finally conclude with a brief summary and outline of
future work in Section VIII.

II. SPEED KIT: SYSTEM OVERVIEW

Speed Kit is designed as a code plugin that essentially turns
an existing website into a sophisticated Progressive Web App
(PWA) [26]. It is engineered on top of the Service Worker
specification [29] and is included as a single-line JavaScript
code snippet. Speed Kit offers typical PWA features such as
push notifications and an offline mode, but more importantly
implements a unique caching strategy for combining low
access latency with guaranteed data freshness.

The Smart Client Proxy. Figure 1 illustrates the principle

mailto:ww@baqend.com,fg@baqend.com,ew@baqend.com,hk@baqend.com,fb@baqend.com
mailto:wollmer@informatik.uni-hamburg.de,ritter@informatik.uni-hamburg.de?cc=ww@baqend.com,fg@baqend.com,ew@baqend.com,hk@baqend.com,fb@baqend.com&


Fig. 1: To accelerate content delivery, the Speed Kit client
proxy intercepts requests made by the browser and reroutes
them: Instead of loading content from the original source, the
browser fetches data from Speed Kit’s fast caching infrastruc-
ture which is kept in-sync with the original data source in the
background.

by which Speed Kit accelerates websites. Whenever a user
visits the website, the Speed Kit client proxy is launched
as a Service Worker process that runs concurrently to the
main thread in the browser. As soon as the Service Worker
is installed1 and active, the client proxy starts intercepting all
HTTP requests made by the browser to do one of two things:
The proxy either (1) executes the request exactly as intended
by the browser or it (2) rewrites the request to load the content
from Speed Kit’s own caching infrastructure instead of the
original domain. In case of a cache hit, the rewritten request
returns instantly (browser cache), within few milliseconds
(CDN or other intermediate cache), or a few dozen to a few
hundred milliseconds (Speed Kit backend), depending on the
location and network connection of the client. On a cache miss,
in contrast, the request is served as fast as the origin allows as
the Speed Kit backend fetches the original response from the
origin server and streams it to the requesting client through
the caching hierarchy, thus making sure the response will be
cached from this point on to accelerate subsequent requests.
As the backend assigns TTLs independent of the ones provided
by the origin, caching efficiency improves over time as Speed
Kit learns from the observed workload. Our current approach
is backward-oriented [20, Sec. 4.2], but we intend to explore
predictive approaches in the future (cf. Section VIII).

Staleness-Free Browser Caching. Without special precau-
tions, the danger of accessing stale data is inherent to using
purely expiration-based caches like the browser cache, forward
proxies, or ISP caches. To provide staleness guarantees inde-
pendently of caching headers, Speed Kit implements an out-
of-band cache invalidation mechanism. Since a comprehensive
discussion of this topic would be out of scope, we only cover
the basic procedure here and refer to the PhD thesis on Speed
Kit’s cache coherence protocol [17] for details. In essence,
Speed Kit’s backend keeps all cached data items in-sync with

1To facilitate an early Service Worker activation, the code snippet should
be included as early as possible, ideally in the website’s header.

the original website as long as their TTLs are valid. To this
end, we introduce a mechanism called refresh (cf. Section V)
that crawls the origin, compares the current with the cached
version of every asset, and purges stale cache entries either on
a scheduled basis (refresh cron jobs) or in realtime (refresh
API hooks). Whenever an inconsistency between cache and
origin is detected, all invalidation-based caches are purged
(e.g. the CDN); since purely expiration-based caches cannot be
purged, however, the backend maintains all stale cache entries
for their remaining TTL in a space-efficient data structure
called the Cache Sketch [19] which the client retrieves in fixed
intervals (default: 30 sec.). Since the Cache Sketch is based on
Bloom filters [6] [8] and inherits the property to never produce
false negatives for containment checks, the client proxy can
safely leverage expiration-based caches by only using them
for items not present in the Cache Sketch. We discuss the
relationship between the Cache Sketch refresh interval and
worst-case staleness in Section V.

GDPR Compliance & Security. Since personally iden-
tifiable information is neither processed nor stored by its
backend, Speed Kit complies with data protection laws such as
the GDPR unless explicitly configured otherwise. By design,
Speed Kit only accelerates GET requests by caching their
responses, i.e. POST, PUT, and DELETE requests are always
processed by the original site alone. Since third-party cookies
and credentials are further not accessible for Service Workers
by specification [40], private data is hidden from Speed Kit
unless exposed through GET requests (e.g. username and
password visible in the URL). To avoid caching sensitive
information by accident, Speed Kit only handles website
requests that are explicitly whitelisted, excluding requests
that are blacklisted; the client proxy’s behavior is determined
by a website-specific configuration that is transmitted to the
browser when installing the Service Worker. To prevent man-
in-the-middle or other attacks, Speed Kit further rejects web-
sites that are not protected by TLS encryption. This is in line
with Service Workers (and certain other browser features [30])
which are also exclusively available on TLS-secured websites.

III. DEFAULT OPTIMIZATIONS

Apart from the features mentioned in Section II, Speed Kit
provides a number of significant default optimizations which
will be covered in the following.

Implicit Network Tuning. Each of Speed Kit’s CDN nodes
maintains a pool of persistent TLS connections to its backend.
By establishing a TLS connection to the nearest CDN edge
node, a client thus also immediately leverages the warm
connection to Speed Kit’s backing store. Since the initial
TLS handshake takes at least two roundtrips [25, Ch. 4],
establishing a secure connection with a CDN node in close
proximity can also provide a substantial latency benefit over
going all the way to the original web server. By employing
OCSP stapling, stateless session resumption, dynamic record
sizing, and several TCP tweaks (cf. [25, Ch. 4]), Speed Kit
further ensures that the handshake never takes more than the
minimum of two round trips to the nearest CDN node.



Caching Third-Party Content. In practice, page load time
is often hampered by third-party dependencies such as social
media integrations (e.g. Facebook), tracking providers (e.g.
Google Analytics), JavaScript library CDNs (e.g. CDN.js),
image hosters (e.g. eBay product images), or other service
APIs (e.g. Google Maps). Since these resources are hosted on
external domains which are out of the website owner’s control,
they are not eligible for CDN caching. In consequence, these
additional third-party libraries introduce their own handshakes
at TCP and TLS levels and are therefore loaded over cold low-
bandwidth connections (cf. TCP slow start [41]). As Speed
Kit is able to rewrite requests within the client, it fetches
third-party resources through the established and fast HTTP/2
connection to Speed Kit’s infrastructure rather than through
slow connections to third-party domains. By keeping cached
third-party resources up-to-date through periodic refresh jobs
(cf. Section V), this optimization can be employed without
additional staleness.

Implicit Compression & Content Reencoding. In order
to alleviate the network footprint for loading complete scripts
and HTML files, Speed Kit applies Gzip compression to all
text-based resources that are delivered uncompressed by the
original Web server. Oftentimes, however, the browser cache
already contains a cached copy that is substantially similar to
the up-to-date version of a resource at the server. In this case,
transmitting the full resource means sending largely redundant
information over the network irrespective of whether compres-
sion is enabled or not. If delta encoding [31] were supported
for obtaining the up-to-date version, in contrast, the client
could reuse portions of the (outdated) copy in the browser
cache by only loading a diff and applying it locally. But in spite
of standardization efforts and significant potential benefits
[32], we are not aware of a single commercially relevant
implementation of delta encoding in HTTP. We are currently
evaluating an implementation of delta encoding within Speed
Kit to increase efficiency of communication between the client
proxy and the caching infrastructure.

Dynamic Image Transcoding. As another means to min-
imize page weight, Speed Kit transcodes images on-the-fly
to the most efficient formats supported by the user’s browser
(e.g. WebP and Progressive JPEG) and rescales them to fit
the requesting client’s screen: A user with a high-resolution
display will thus receive high-resolution images, while a user
with an old mobile phone will receive a version that is
natively scaled to the smaller screen dimensions. Speed Kit
is further able to apply stronger compression to images when
the network connection is poor in order to trade image quality
against a faster paint. While mostly imperceptible for users,
these optimizations lead to significant load time improvements,
especially when images make up a large portion of the payload
and bandwidth is limited (e.g. on mobile connections).

IV. DYNAMIC BLOCKS: ACCELERATING PERSONALIZED
CONTENT THROUGH CACHING

Websites often contain customized elements, for example
personal user greetings, product recommendations, or the

number of items currently in the shopping cart. Since these
are unique for every user and change frequently, caching
them with traditional means is neither efficient (because of
low cache hit rates) nor appropriate (because of potential
staleness). Since Speed Kit’s client proxy allows for custom
processing within the user device, though, it is able to separate
the generic website elements from the personalized ones
during page load and merge them on arrival in the browser.

Fig. 2: With Dynamic Blocks, Speed Kit loads a cached anon-
ymous website version first and fills in personalized info later.

Figure 2 illustrates the procedure for an e-commerce website
with a customized shopping cart. On page load, the client
proxy requests the personalized website from the origin server
like the browser normally would, but in addition also requests
the same page from Speed Kit’s caches as a user that is
not logged in. Since anonymous users are typically shown a
generic version of the page, the anonymous HTML is easily2

cacheable and can therefore be delivered faster (from Speed
Kit’s caches) than the personalized HTML (from the origin).
As a result, the browser starts parsing the anonymous HTML,
fetching linked assets, and rendering the page faster, too. When
the personalized HTML from the origin server finally arrives,
the client proxy injects the personalized DOM elements into
the generic HTML. To this end, it first identifies3 the relevant
DOM elements – the Dynamic Blocks – in the anonymous
and the personalized HTML files and then replaces them. A
website with Dynamic Blocks thus behaves similar to a single-
page app that loads a generic app shell from the cache and
fetches personalized content asynchronously via Ajax/REST
API requests.

V. A POLYGLOT BACKEND FOR FLEXIBLE & EFFICIENT
CACHE MAINTENANCE

As described in Section II, the client proxy relies on the
Speed Kit backend for discovering and invalidating stale
caches through refreshing. The refresh procedure involves
(1) selecting potentially stale cached assets from Speed Kit’s
backend storage, (2) downloading the corresponding assets
from the origin server, (3) comparing the original and the
cached versions, and (4) invalidating only those cached assets

2Speed Kit offers a customizable HTML normalization step to remove
server-generated timestamps or other unique artifacts in the backend before
putting the HTML into the caches.

3Since the client proxy currently does not recognize personalized sections
on its own, Dynamic Blocks require specification of JavaScript query selectors
in the Speed Kit config to pick the right DOM elements for content injection.



that have been updated. Compared to typical purge APIs
known from CDNs, our approach has three significant benefits:

1) No Unnecessary Invalidations: By checking for actual
content changes before clearing cache entries, even highly
frequent refreshes do not affect cache hit rate when
caches are still up-to-date.

2) Query Expressiveness: In addition to specification by
URL or tag, the refresh API supports complex queries for
selecting to-be-refreshed assets (e.g. a regex expression
for URLs combined with a filter on the content type).

3) Automatic Staleness Detection: To facilitate easy cache
synchronization with minimal integration effort, refreshes
are scheduled for fully automatic content update checks
in regular intervals via refresh cron jobs.

Block Storage + Database = Scalability + Expressiveness.
To enable refreshes with query expressiveness on top of a
CDN that only supports key-based purging by URL and tags,
Speed Kit’s backend stores a metadata summary for every
cached asset in a database system (MongoDB) separately from
the actual assets which are stored in a scalable block storage
(S3). As the first step in every refresh job, the metadata store
is queried to retrieve all summaries that match the provided
refresh specification. Since every asset summary contains the
asset URL and a content hash, the subsequent steps of the
refresh job can be parallelized across multiple servers for the
individual assets: downloading the current version from the
origin, computing the content hash and comparing it against
the one from the summary, and (only on actual change) updat-
ing the block and metadata storages, inserting the asset into
the Cache Sketch, and purging the CDN. As an optimization,
eTags [33, Sec. 14.19] are used for comparison when present
to skip the expensive download and hash computation.

Reliable & Fast Change Discovery. The typical Speed Kit
deployment is configured for a dual content discovery strategy:
To make sure that Speed Kit’s caches eventually reflect all
and any content changes, all cached assets are crawled for
changes on a regular basis through multiple scheduled refresh
jobs (e.g. landing pages every 10 minutes, stylesheets once
a day, and all cached assets every Thursday at 4 AM after
deployment). For immediate synchronization after a content
update, however, real-time refresh jobs can be triggered pro-
grammatically (e.g. through hooks in a content management
system) or manually in the dashboard (e.g. by a developer after
an unscheduled deployment). Since refreshes are executed in
parallel on powerful machines with high-bandwidth network
links, the duration of a refresh job is dominated by the
time it takes the origin to serve the associated assets. The
overhead for updating the caches is well below one second,
as the time required for computing and comparing content
hashes is negligible, the server-side Cache Sketch is updated
immediately, and global propagation time for invalidations in
Speed Kit’s underlying CDN is only around 150ms [5].

∆-Atomicity. The actual staleness ∆max exposed to the user
is determined by three factors, namely (1) the time tdiscovery
it takes Speed Kit’s backend to detect content updates, (2) the

change propagation time tpurge for updating the CDN caches
accordingly, and (3) the Cache Sketch refresh interval trefresh
that specifies how often the client proxy checks for stale cache
entries (cf. page 2):

∆max ≤ tdiscovery + tpurge + trefresh

While tdiscovery usually dominates staleness for content that
is refreshed on a scheduled basis alone (e.g. once an hour or
once a day), trefresh is the determining factor when real-time
refreshes are used: We have observed tpurge + tdiscovery �
30sec to be a safe assumption in practice4, so that ∆-atomicity
[21] with ∆ = 60sec is easily satisfied with the default of
trefresh = 30sec.

VI. SPEED KIT IN ACTION

Since mid-2018, Speed Kit has been used in e-commerce
businesses ranging from small WordPress shops to large-
scale international retailers such as the OTTO daughter Baur
[34]. Through dynamic content optimization and its unique
ability to accelerate personalized content, Speed Kit achieves
a significant performance uplift even for website deployments
that are already optimized. Especially for deployments with
a slow time to first byte (TTFB), Speed Kit can bring down
page loads from several seconds to below one second, thus
often improving user engagement metrics such as the average
session length or critical business KPIs like the conversion rate
(see [18] for a concrete case study).

A Page Load With Speed Kit. The following end-to-
end example describes a typical page load with Speed Kit
to summarize and illustrate how its acceleration works:

1) Compatibility check: If Service Workers are supported5,
the browser runs the Speed Kit JavaScript snippet. Oth-
erwise, the page loads without Speed Kit.

2) Service Worker initialization: Speed Kit is activated
during the very first page load and starts serving requests
from this point on. While the first requests of the very
first page load are thus processed normally, every request
is accelerated for returning visitors when the Service
Worker is already installed.

3) Request interception: Any request issued by the browser
is proxied through Speed Kit’s Service Worker by default.

• Offline mode: Speed Kit serves everything from cache
when disconnected, but automatically synchronizes all
content on reconnect.

• Normal operation: Based on the config, Speed Kit
decides whether to execute the unaltered request or
to rewrite it to Speed Kit’s caching infrastructure for
acceleration and content optimization such as image
transcoding and rescaling or implicit Gzip compression
(cf. Section III).

4) Staleness check: To evaluate if expiration-based caches
are safe to use, the client proxy looks up the requested

4As long as the origin serves content consistently fast, overall change
discovery time with real-time refreshes is in the realm of single-digit seconds.

5Service Workers are supported by over 90% of all browsers [13].



resource in the local Cache Sketch which is retrieved once
upfront and refreshed periodically (cf. Section II).

5) Accelerated response: If the Cache Sketch contains the
resource, it might be stale and therefore must be requested
from the nearest invalidation-based cache (i.e. CDN).
Else, the response is served from the following caches:

a) Local cache: If the requested response is present in one
of the device-local caches (e.g. browser cache), Speed
Kit returns it instantly.

b) CDN cache: Upon a local cache miss, Speed Kit issues
the request over the HTTP/2 connection to its CDN.

c) Speed Kit backend: If there is a CDN cache miss, the
response is fetched from one of Speed Kit’s servers
which (if it is not already available) fetches it from the
original server. In the process, both asset and metadata
(URL, content type, etc.) are stored in the polyglot
backend (cf. Section V).

6) Dynamic Blocks: When requesting the HTML of a
website configured for Dynamic Blocks (cf. Section IV),
the client proxy concurrently retrieves an anonymous
version from its fast caches and the fully personalized
version from the website’s origin. The anonymous version
typically arrives faster and is therefore processed (and
rendered) earlier. On receiving the personalized HTML,
the client proxy extracts the personalized DOM tree
elements and injects them into the rendered page, thus
leaving it fully personalized.

VII. DISCUSSION & COMPETING APPROACHES

To expound where Speed Kit advances the current state of
the art, we now contrast our own against other approaches for
tackling Web performance.

Speed Kit vs. CDNs. Unlike traditional CDNs, Speed Kit
does not only optimize content delivery between the website’s
origin and the CDN edge nodes, but goes all the way to the
end user. Since its client proxy is located within the user
device, Speed Kit is able to combine expiration-based browser
caching with rigorous freshness guarantees while accelerating
even personalized websites and third-party dependencies, all
of which are out of reach for state-of-the-art CDN caching.
Mechanisms like Fastly’s Edge Side Includes [14], Amazon
CloudFront’s Lambda@Edge [3], and Cloudflare Workers [38]
do allow custom processing on the edge, but they are complex
to integrate into existing websites and do not address last-mile
latency issues. Invalidating content that changes frequently
is also often infeasible, since many CDNs provide purge
latencies on the order of minutes (e.g. Google Cloud CDN
[10], Amazon CloudFront [4], CDN77 [12]) or even hours
(e.g. Cloudinary [7]).

Speed Kit’s refresh jobs support complex queries for se-
lecting potentially stale cache entries and only purge those
that are actually stale. Modern CDNs, in contrast, are less
expressive as they merely support purging individual assets by
URL or all assets at once (e.g. CDN77 [12], StackPath [37],
Yottaa [42]), or asset groups by tag, host, domain, or URL

prefix (e.g. Cloudflare [11], Fastly [16], Akamai [1], Google
Cloud CDN [22], Amazon CloudFront [2], KeyCDN [35]).
We are not aware of a single purge API that provides query
expressiveness comparable to that of Speed Kit’s refresh API.
Further, CDN purge APIs are less lenient than refreshes as
they blindly invalidate all matching cache entries, irrespective
of whether or not they are actually in-sync with the origin. By
checking for actual changes before invalidation, refresh jobs
are thus more convenient as they remove the need to identify
the exact places where changes occur.

As another key distinction, Speed Kit does not process
or store personally identifiable information like cookies or
credentials, so that it can be deployed without violating GDPR
compliance. Finally, Speed Kit is also easier to integrate into
existing website than a typical CDN as it relies on including
a script into the website’s head rather than taking over the
website’s DNS.

Speed Kit vs. Micro-Caching. Many Web architectures
employ micro-caching as a means to increase scalability: To
fan out reads, they serve slightly stale resources through a tier
of caching servers (e.g. Varnish [28]) in front of the actual web
server. Micro-caching minimizes staleness through short TTLs
by design, but thereby also causes frequent cache misses as
cached responses expire quickly. This diminishes the efficiency
of the caching tier and creates latency stragglers. Speed Kit
does not have this problem, since its refresh and invalidation
mechanisms decouple freshness guarantees from cache life-
times. Even with large TTLs, staleness can be bounded by
employing refreshes in periods (e.g. every 5 minutes) or in
realtime (e.g. through CMS hooks): The browser cache will be
used until it is invalidated by a refresh job, after which Speed
Kit falls back to the CDN and other caches until expiration.
Since all caches are backed by Speed Kit’s storage backend,
the origin is only hit on comparatively rare cache misses and
during refreshes. It should also be noted that micro-caching is
not applicable to personalized content, since short TTLs are
ineffective (no cache hits), whereas large TTLs expose stale
content to the user.

Speed Kit vs. AMP & Instant Articles. Google’s Acceler-
ated Mobile Pages (AMP) and Facebook’s Instant Articles (IA)
can also be used to create fast websites. Contrasting Speed
Kit, however, AMP and IA do not work as plugin solutions
for existing websites. Rather, they require rebuilding existing
websites on Google’s and Facebook’s proprietary platforms,
necessarily creating fast-loading pages as only features are
allowed that do not hurt web performance.

AMP makes websites lean by enforcing limitations like
restricted HTML (only a stripped-down version of HTML syn-
tax), restricted JavaScript (no custom code allowed, except in
iframes), restricted CSS (all stylings must be inlined and below
50 KB overall), no repaints (no resizing of DOM elements,
i.e. only static sizes allowed), Google styling (mandatory
Google bar at the top), and a stale-while-revalidate cache
policy (i.e. users may see outdated content [23]). As another
optimization, the browser prefetches the featured AMP pages
already when displaying the Google search result. Since they



are thus loaded regardless of whether the user actually clicks
the link, AMP pages can be rendered instantly. However, this
only works for users visiting through the Google search and
does not accelerate the page load for normal users. Instant
Articles are technically similar to Google’s AMP. One of the
most significant distinctions, however, is that they are only
accessible for Facebook users and therefore cannot be used to
create public websites.

In contrast to AMP and IA, Speed Kit works for existing
websites without restrictions on the target platform or the
permitted HTML, CSS, or JavaScript constructs.

VIII. SUMMARY & OUTLOOK

Speed Kit addresses both technical and legal challenges
associated with content delivery in modern Web applications.
First, it provides ∆-atomicity freshness guarantees on top
of traditional HTTP caching by combining refresh jobs for
change discovery with a custom protocol for cache invalida-
tion. Further, Speed Kit makes caching applicable to personal-
ized websites that are typically considered uncacheable. To this
end, it separates generic from user-tailored website elements
through Dynamic Blocks and loads them individually. Finally,
Speed Kit avoids data protection hazards by processing sensi-
tive information exclusively on the user device, thus keeping
it away from third parties such as CDN providers.

Since this paper describes our overall approach, several
aspects are only covered briefly. In future publications, we
therefore plan to present more details on semantics, trade-
offs, and optimizations of the refresh procedure and the
polyglot architecture supporting it. We further plan to eval-
uate advanced optimizations for content delivery (e.g. delta
encoding) and explore different use cases for machine learn-
ing that we encountered in the context of our caching ap-
proach (e.g. predicting optimal TTLs on the basis of observed
invalidation times).

REFERENCES

[1] Akamai Technologies. Fast Purge API v3, 2019. https://developer.
akamai.com/api/core_features/fast_purge/v3.html (2019-06-06).

[2] Amazon Web Services, Inc. Invalidation paths, 2016. https:
//docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
Invalidation.html#invalidation-specifying-objects-paths (2019-06-06).

[3] Amazon Web Services, Inc. Lambda@Edge, 2019. https://aws.amazon.
com/lambda/edge/ (2019-06-06).

[4] Amazon Web Services, Inc. Why is CloudFront serving outdated con-
tent from Amazon S3?, 2019. https://aws.amazon.com/premiumsupport/
knowledge-center/cloudfront-serving-outdated-content-s3 (2019-06-06).

[5] H. Beheshti. Leveraging your CDN to cache “uncacheable”
content. Fastly Blog, 2015. https://www.fastly.com/blog/
leveraging-your-cdn-cache-uncacheable-content (2019-06-01).

[6] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[7] O. Bogler. I’ve replaced an existing image with a new one, but
my website still shows the old one. Why is that? Cloudinary Sup-
port, 2019. https://support.cloudinary.com/hc/en-us/articles/202520852
(2019-06-06).

[8] F. Bonomi, M. Mitzenmacher, R. Panigrahy, et al. An Improved
Construction for Counting Bloom Filters. In ESA. Springer, 2006.

[9] California State Legislature. California Consumer Privacy Act of 2018.
California Civil Code, 2018.

[10] Closte, LLC. Google Cloud CDN, 2018. https://closte.com/support/
wordpress/google-cloud-cdn (2019-06-06).

[11] Cloudflare, Inc. Purge Files by Cache-Tags or Host, 2019. https://api.
cloudflare.com/#zone-purge-files-by-cache-tags-or-host (2019-06-06).

[12] DataCamp, Ltd. Data Management, 2019. https://client.cdn77.com/
support/api/version/2.0/data (2019-06-06).

[13] A. Deveria et al. Can I use Service Workers? caniuse.com, 2019. https:
//caniuse.com/#search=Service%20Workers (2019-07-13).

[14] C. Dixon. How do I enable basic ESI in my VCL? Fastly
Support, 2014. https://support.fastly.com/hc/en-us/community/posts/
360040447152 (2019-06-06).

[15] European Parliament and Council of the European Union. Regulation
2016/679 (General Data Protection Regulation). 2016.

[16] Fastly, Inc. API Reference: Purging, 2019. https://docs.fastly.com/api/
purge.html (2019-06-06.

[17] F. Gessert. Low Latency for Cloud Data Management. PhD thesis,
University of Hamburg, Von-Melle-Park 3, 20146 Hamburg, 2018.

[18] F. Gessert. AppelrathCüpper: How Speed Kit Helps in Fashion
E-Commerce. Baqend Tech Blog, 2019. https://medium.com/p/
c587f4c88ec (2019-05-25).

[19] F. Gessert, M. Schaarschmidt, W. Wingerath, et al. The Cache Sketch:
Revisiting Expiration-Based Caching in the Age of Cloud Data Man-
agement. In Proceedings of the BTW 2015, 2015.

[20] F. Gessert, M. Schaarschmidt, W. Wingerath, et al. Quaestor: Query
Web Caching for Database-as-a-Service Providers. PVLDB, 2017.

[21] W. Golab, X. Li, and M. A. Shah. Analyzing Consistency Properties
for Fun and Profit. In ACM PODC, pages 197–206. ACM, 2011.

[22] Google. Cache Invalidation Overview, 2019. https://cloud.google.com/
cdn/docs/cache-invalidation-overview (2019-06-06).

[23] Google. Google AMP Cache Updates, 2019. https://developers.google.
com/amp/cache/overview#google-amp-cache-updates (2019-06-05).

[24] D. Grant. Introducing a Powerful Way to Purge Cache on CloudFlare:
Purge by Cache-Tag. Cloudflare Blog, 2015. https://t.co/k6NHk3z0B6
(2019-05-25).

[25] I. Grigorik. High Performance Browser Networking. O’Reilly, 2013.
[26] D. A. Hume. Progressive Web Apps. Manning Publications Co.,

Greenwich, CT, USA, 1st edition, 2017.
[27] L. Kalman. New european data privacy and cyber security laws: One

year later. Commun. ACM, 62(4):38–38, Mar. 2019.
[28] P.-H. Kamp. Varnish, 2019. https://varnish-cache.org/ (2019-05-27).
[29] M. Kruisselbrink, J. Song, A. Russell, and J. Archibald. Service

workers. W3C working draft, W3C, 2017. https://www.w3.org/TR/
2017/WD-service-workers-1-20171102/ (2019-05-26).

[30] V. Lynch. HTTPS-Only Features in Major Browsers. The DigiCert Blog,
2018. https://www.digicert.com/blog/https-only-features-in-browsers/
(2019-05-26).

[31] J. Mogul, B. Krishnamurthy, F. Douglis, A. Feldmann, Y. Goland, A. van
Hoff, and D. Hellerstein. Delta Encoding in HTTP. RFC 3229, RFC
Editor, January 2002.

[32] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy. Potential
benefits of delta encoding and data compression for http. SIGCOMM
Comput. Commun. Rev., 27(4):181–194, Oct. 1997.

[33] H. F. Nielsen, J. Mogul, L. M. Masinter, R. T. Fielding, et al. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616, June 1999.

[34] Otto GmbH. Baur, 2019. https://www.baur.de/ (2019-07-12).
[35] Proinity LLC. Purge Zone Tag, 2019. https://www.keycdn.com/api#

purge-zone-tag (2019-06-06).
[36] B. Spang. Building a Fast and Reliable Purging Sys-

tem. Fastly Blog, 2014. https://www.fastly.com/blog/
building-fast-and-reliable-purging-system (2019-05-25).

[37] StackPath, LLC. Purge cached content for all CDN sites on
a stack, 2019. https://developer.stackpath.com/en/api/cdn/#operation/
PurgeContent (2019-06-06).

[38] K. Varda. Introducing Cloudflare Workers: Run JavaScript Service
Workers at the Edge. Cloudflare Blog, 2017. https://blog.cloudflare.
com/introducing-cloudflare-workers/ (2019-06-06).

[39] T. Vereecke. A Technical Deep Dive Into Purging by Cache Tag. Akamai
Developer Blog, 2019. https://developer.akamai.com/blog/2019/03/28/
technical-deep-dive-purging-cache-tag (2019-05-25).

[40] Web Hypertext Application Technology Working Group (WHATWG).
Fetch API Specification: Forbidden Header Names. https://fetch.spec.
whatwg.org/#forbidden-header-name (2019-06-04).

[41] J. Widmer, R. Denda, and M. Mauve. A Survey on TCP-friendly
Congestion Control. Netwrk. Mag. of Global Internetwkg., May 2001.

[42] Yottaa. Flush Cache With Yottaa API, 2019. https://support.yottaa.com/
CustomerSupport/s/article/Flush-cache-with-Yottaa-API (2019-06-06).

https://developer.akamai.com/api/core_features/fast_purge/v3.html
https://developer.akamai.com/api/core_features/fast_purge/v3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Invalidation.html#invalidation-specifying-objects-paths
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Invalidation.html#invalidation-specifying-objects-paths
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/Invalidation.html#invalidation-specifying-objects-paths
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/lambda/edge/
https://aws.amazon.com/premiumsupport/knowledge-center/cloudfront-serving-outdated-content-s3
https://aws.amazon.com/premiumsupport/knowledge-center/cloudfront-serving-outdated-content-s3
https://www.fastly.com/blog/leveraging-your-cdn-cache-uncacheable-content
https://www.fastly.com/blog/leveraging-your-cdn-cache-uncacheable-content
https://support.cloudinary.com/hc/en-us/articles/202520852
https://closte.com/support/wordpress/google-cloud-cdn
https://closte.com/support/wordpress/google-cloud-cdn
https://api.cloudflare.com/#zone-purge-files-by-cache-tags-or-host
https://api.cloudflare.com/#zone-purge-files-by-cache-tags-or-host
https://client.cdn77.com/support/api/version/2.0/data
https://client.cdn77.com/support/api/version/2.0/data
https://caniuse.com/#search=Service%20Workers
https://caniuse.com/#search=Service%20Workers
https://support.fastly.com/hc/en-us/community/posts/360040447152
https://support.fastly.com/hc/en-us/community/posts/360040447152
https://docs.fastly.com/api/purge.html
https://docs.fastly.com/api/purge.html
https://medium.com/p/c587f4c88ec
https://medium.com/p/c587f4c88ec
https://cloud.google.com/cdn/docs/cache-invalidation-overview
https://cloud.google.com/cdn/docs/cache-invalidation-overview
https://developers.google.com/amp/cache/overview#google-amp-cache-updates
https://developers.google.com/amp/cache/overview#google-amp-cache-updates
https://t.co/k6NHk3z0B6
https://varnish-cache.org/
https://www.w3.org/TR/2017/WD-service-workers-1-20171102/
https://www.w3.org/TR/2017/WD-service-workers-1-20171102/
https://www.digicert.com/blog/https-only-features-in-browsers/
https://www.baur.de/
https://www.keycdn.com/api#purge-zone-tag
https://www.keycdn.com/api#purge-zone-tag
https://www.fastly.com/blog/building-fast-and-reliable-purging-system
https://www.fastly.com/blog/building-fast-and-reliable-purging-system
https://developer.stackpath.com/en/api/cdn/#operation/PurgeContent
https://developer.stackpath.com/en/api/cdn/#operation/PurgeContent
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://blog.cloudflare.com/introducing-cloudflare-workers/
https://developer.akamai.com/blog/2019/03/28/technical-deep-dive-purging-cache-tag
https://developer.akamai.com/blog/2019/03/28/technical-deep-dive-purging-cache-tag
https://fetch.spec.whatwg.org/#forbidden-header-name
https://fetch.spec.whatwg.org/#forbidden-header-name
https://support.yottaa.com/CustomerSupport/s/article/Flush-cache-with-Yottaa-API
https://support.yottaa.com/CustomerSupport/s/article/Flush-cache-with-Yottaa-API

	Motivation: Challenges in Modern Web Caching
	Speed Kit: System Overview
	Default Optimizations
	Dynamic Blocks: Accelerating Personalized Content Through Caching
	A Polyglot Backend For Flexible & Efficient Cache Maintenance
	Speed Kit in Action
	Discussion & Competing Approaches
	Summary & Outlook
	References

